Control of blood proteins by functional disulfide bonds.

نویسندگان

  • Diego Butera
  • Kristina M Cook
  • Joyce Chiu
  • Jason W H Wong
  • Philip J Hogg
چکیده

Most proteins in nature are chemically modified after they are made to control how, when, and where they function. The 3 core features of proteins are posttranslationally modified: amino acid side chains can be modified, peptide bonds can be cleaved or isomerized, and disulfide bonds can be cleaved. Cleavage of peptide bonds is a major mechanism of protein control in the circulation, as exemplified by activation of the blood coagulation and complement zymogens. Cleavage of disulfide bonds is emerging as another important mechanism of protein control in the circulation. Recent advances in our understanding of control of soluble blood proteins and blood cell receptors by functional disulfide bonds is discussed as is how these bonds are being identified and studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombinant Production of a Novel Fusion Protein: Listeriolysin O Fragment Fused to S1 Subunit Of Pertussis Toxin

Background: Some resources have suggested that genetically inactivated pertussis toxoid (PTs) bear a more protective effect than chemically inactivated products. This study aimed to produce new version of PT, by cloning an inactive pertussis toxin S1 subunit (PTS1) in a fusion form with N-terminal half of the listeriolysin O (LLO) pore-forming toxin. Methods: Deposited pdb structure file of the...

متن کامل

Labile disulfide bonds are common at the leucocyte cell surface

Redox conditions change in events such as immune and platelet activation, and during viral infection, but the biochemical consequences are not well characterized. There is evidence that some disulfide bonds in membrane proteins are labile while others that are probably structurally important are not exposed at the protein surface. We have developed a proteomic/mass spectrometry method to screen...

متن کامل

Co-expression of recombinant human nerve growth factor with trigger factor chaperone in E. coli

Nerve growth factor (NGF) is a neurotrophic factor that is functional in the survival, maintenance and differentiation of nervous system cells. This protein has three subunits, of which the beta subunit has the main activity. Its structure consists of a cysteine knot motif made up of beta strands linked by disulfide bonds. It can be used as a therapeutic agent in the treatment of many diseases....

متن کامل

A Novel Vector for Expression/Secretion of Properly Folded Eukaryotic Proteins: a Comparative Study on Cytoplasmic and Periplasmic Expression of Human Epidermal Growth Factor in E. coli

Expression of eukaryotic proteins in E. coli often results in their aggregation. Proper folding and solubility of therapeutical proteins are the pre-requisite for their bioactivity. This is not achieved in cytoplasmic expression in E. coli because of the absence of disulfide bonds formation. A novel expression/secretion vector was constructed which exploited β-lactamase signal sequence to trans...

متن کامل

Predicting disulfide bond connectivity in proteins by correlated mutations analysis

MOTIVATION Prediction of disulfide bond connectivity facilitates structural and functional annotation of proteins. Previous studies suggest that cysteines of a disulfide bond mutate in a correlated manner. RESULTS We developed a method that analyzes correlated mutation patterns in multiple sequence alignments in order to predict disulfide bond connectivity. Proteins with known experimental st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 123 13  شماره 

صفحات  -

تاریخ انتشار 2014